ptimization and temperature mapping of an ultra-high thermal stability nvironmental enclosure

نویسندگان

  • ong Zhao
  • David L. Trumper
  • Ralf K. Heilmann
  • Mark L. Schattenburg
چکیده

Precision metrology, lithography and machining systems will soon require sub-nanometer tolerances in order to meet the evolving needs of industry. This, in turn, requires thermal control of large environmental enclosures with sub-millidegree single-point stability and control of temperature gradients to several millidegrees. In order to optimize the system’s thermal controls, it is essential to measure the openloop transfer function. We report a technique that obtains the open-loop transfer function by utilizing a dynamic signal analyzer to perform a closed-loop frequency response measurement of the thermal system. Based on the transfer function, we designed a PI-lead compensation controller and achieved one-sigma air temperature stability of less than 1 m◦C at a single point over 2 h. In order to rapidly ead control emperature measurement emperature gradients nvironmental enclosure map temperature gradients over large regions inside the 7 m3-volume enclosure, we have developed a measurement scheme that involves mechanically scanning a network of thermistors. Accurate cross calibration of the thermistors and a study of self-heating effects on temperature measurement in moving air have also been performed, which assures the relative accuracy of the thermistors is less than 1 m◦C. Comparing temperature gradient maps taken before and after control improvements shows improved r the temperature stability ove

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural Convection and Entropy Generation in Γ-Shaped Enclosure Using Lattice Boltzmann Method

This work presents a numerical analysis of entropy generation in Γ-Shaped enclosure that was submitted to the natural convection process using a simple thermal lattice Boltzmann method (TLBM) with the Boussinesq approximation.  A 2D thermal lattice Boltzmann method with 9 velocities, D2Q9, is used to solve the thermal flow problem. The simulations are performed at a constant Prandtl number (Pr ...

متن کامل

Transient Natural Convection in an Enclosure with Variable Thermal Expansion Coefficient and Nanofluid Properties

Transient natural convection is numerically investigated in an enclosure using variable thermal conductivity, viscosity, and the thermal expansion coefficient of Al2O3-water nanofluid. The study has been conducted for a wide range of Rayleigh numbers (103≤ Ra ≤ 106), concentrations of nanoparticles (0% ≤ ϕ ≤ 7%), the enclosure aspect ratio (AR =1), and temperature differences between the cold a...

متن کامل

Effect of Variable Thermal Expansion Coefficient and Nanofluid Properties on Steady Natural Convection in an Enclosure

Steady state natural convection is numerically investigated in an enclosure using variable thermal conductivity, viscosity and thermal expansion coefficient of Al2O3–water nanofluid. This study has been conducted for a wide range of Rayleigh numbers (103≤ Ra ≤ 106), concentrations of nanoparticles (0% ≤ Φ ≤ 7%), enclosure aspect ratios (0.5 ≤ AR ≤ 2) and temperature differences between the cold...

متن کامل

Numerical investigation of natural convection phenomena in uniformly heated trapezoidal Cylinder inside an elliptical Enclosure

A numerical study of the natural convection of the laminar heat transfers in the stationary state was developed in a horizontal ring and compared between a heated trapezoidal internal cylinder and a cold elliptical outer cylinder. This annular space is traversed by a Newtonian and incompressible fluid. The Prandtl number is set to 0.7 (air case) for different Rayleigh numbers. The system of equ...

متن کامل

Improving Thermal Stability of Starch in Formate Fluids for Drilling High Temperature Shales

Starch is one of the most widely used biopolymers in water based drilling fluids to control fluid loss. The thermal stability of starch in common drilling fluids is low (93 °C). In this study, the thermal stability of starch has been evaluated in sodium/potassium formate and potassium chloride fluids. Samples of mud were prepared by formate salts (sodium and potassium) and potassium chloride wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009